Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Tipo de estudo
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 837198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432228

RESUMO

Methane, a potent greenhouse gas produced in freshwater ecosystems, can be used by methane-oxidizing bacteria (MOB) and can therefore subsidize the pelagic food web with energy and carbon. Consortia of MOB and photoautotrophs have been described in aquatic ecosystems and MOB can benefit from photoautotrophs which produce oxygen, thereby enhancing CH4 oxidation. Methane oxidation can account for accumulation of inorganic carbon (i.e., CO2) and the release of exometabolites that may both be important factors influencing the structure of phytoplankton communities. The consortium of MOB and phototroph has been mainly studied for methane-removing biotechnologies, but there is still little information on the role of these interactions in freshwater ecosystems especially in the context of cyanobacterial growth and bloom development. We hypothesized that MOB could be an alternative C source to support cyanobacterial growth in freshwater systems. We detected low δ13C values in cyanobacterial blooms (the lowest detected value -59.97‰ for Planktothrix rubescens) what could be the result of the use of methane-derived carbon by cyanobacteria and/or MOB attached to their cells. We further proved the presence of metabolically active MOB on cyanobacterial filaments using the fluorescein isothiocyanate (FITC) based activity assay. The PCR results also proved the presence of the pmoA gene in several non-axenic cultures of cyanobacteria. Finally, experiments comprising the co-culture of the cyanobacterium Aphanizomenon gracile with the methanotroph Methylosinus sporium proved that cyanobacterial growth was significantly improved in the presence of MOB, presumably through utilizing CO2 released by MOB. On the other hand, 13C-CH4 labeled incubations showed the uptake and assimilation of MOB-derived metabolites by the cyanobacterium. We also observed a higher growth of MOB in the presence of cyanobacteria under a higher irradiance regime, then when grown alone, underpinning the bidirectional influence with as of yet unknown environmental consequences.

2.
Sci Rep ; 10(1): 13956, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811858

RESUMO

Under conditions of global warming, organisms are expected to track their thermal preferences, invading new habitats at higher latitudes and altitudes and altering the structure of local communities. To fend off potential invaders, indigenous communities/populations will have to rapidly adapt to the increase in temperature. In this study, we tested if decades of artificial water heating changed the structure of communities and populations of the Daphnia longispina species complex. We compared the species composition of contemporary Daphnia communities inhabiting five lakes heated by power plants and four non-heated control lakes. The heated lakes are ca. 3-4 °C warmer, as all lakes are expected to be by 2100 according to climate change forecasts. We also genotyped subfossil resting eggs to describe past shifts in Daphnia community structure that were induced by lake heating. Both approaches revealed a rapid replacement of indigenous D. longispina and D. cucullata by invader D. galeata immediately after the onset of heating, followed by a gradual recovery of the D. cucullata population. Our findings clearly indicate that, in response to global warming, community restructuring may occur faster than evolutionary adaptation. The eventual recolonisation by D. cucullata indicates that adaptation to novel conditions can be time-lagged, and suggests that the long-term consequences of ecosystem disturbance may differ from short-term observations.


Assuntos
Daphnia/crescimento & desenvolvimento , Daphnia/genética , Daphnia/fisiologia , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Biota/fisiologia , Ecossistema , Variação Genética , Genética Populacional/métodos , Genótipo , Aquecimento Global , Temperatura Alta/efeitos adversos , Filogenia , Temperatura
3.
Front Microbiol ; 11: 582, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390961

RESUMO

It has been proposed that zooplankton-associated microbes provide numerous beneficial services to their "host". However, there is still a lack of understanding concerning the effect of temperature on the zooplankton microbiome. Furthermore, it is unclear to what extent the zooplankton microbiome differs from free-living and particle-associated (PA) microbes. Here, we explicitly addressed these issues by investigating (1) the differences in free-living, PA, and zooplankton associated microbes and (2) the impact of temperature on these microbes in the water column of a series of lakes artificially warmed by two power plants. High-throughput amplicon sequencing of the 16S rRNA gene showed that diversity and composition of the bacterial community associated to zooplankton, PA, and bacterioplankton varied significantly from one another, grouping in different clusters indicating niche differentiation of pelagic microbes. From the abiotic parameters measured, temperature significantly affected the diversity and composition of all analyzed microbiomes. Two phyla (e.g., Proteobacteria and Bacteroidetes) dominated in zooplankton microbiomes whereas Actinobacteria was the dominant phylum in the bacterioplankton. The microbial species richness and diversity was lower in zooplankton compared to bacterioplankton and PA. Surprisingly, genera of methane-oxidizing bacteria, methylotrophs and nitrifiers (e.g., Nitrobacter) significantly associated with the microbiome of zooplankton and PA. Our study clearly demonstrates niche differentiation of pelagic microbes and their potential link to biogeochemical cycling in freshwater systems.

4.
Zool Stud ; 54: e2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-31966089

RESUMO

BACKGROUND: Filamentous cyanobacteria are known to negatively affect the life history of planktonic herbivores through mechanical interference with filtering apparatus. Here, we hypothesise that not only the length but also thethickness of cyanobacterial filaments is an important factor shaping the life history of Daphnia. RESULTS: To test our hypothesis, we cultured Daphnia magna with non-toxin-producing strains of either Aphanizomenongracile orCylindrospermopsisraciborskii.The former possesses wide filaments, whereas the latter has thinner filaments. The strain of A. gracile has two morphological forms differing in filament widths. The exposure to the thicker A. gracile filaments caused a stronger body-length reduction in females at maturity and a greater decrease in offspring number than exposure to the thinner C. raciborskii filaments. The width of filaments, however, did not significantly affect the length of newborns. The analysis of mixed thick and thin A. gracile filament width distribution revealed that D. magna reduces the number of thinner filaments, while the proportion of thicker ones increases.Also, the effects of cyanobacterial exudates alone were examined to determine whether the changes in D.magna lifehistory were indeed caused directly by the physical presence of morphologically different filaments and not by confounding effects from metabolite exudation. This experiment demonstrated no negative effects of both A. gracile and C. raciborskiiexudates. CONCLUSIONS: To our knowledge, this is the first study that demonstrates that the thickness of a cyanobacterial filament might be an important factor in shaping D. magna's life history. At a given biomass, thicker filaments of A. gracile were more detrimental to D. magna than thinner ones of C. raciborskii. There was also a strong interaction between species of the cyanobacterium and filament biomass, where species with thicker filaments and at higher biomass had the strongest negative impact on D. magna life history.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...